Carotid body chemoreceptor function: hypothesis based on a new circuit model.
نویسنده
چکیده
Integration of our own morphological observations into recent ultrastructural, biochemical, and neuropharmacological results on the carotid body led to a new hypothesis on chemoreceptor function: (i) Glomus cells with small dense-cored vesicles (type IB cells) that store norepinephrine are chemoreceptors. (ii) Glomus cells with large dense-cored vesicles (type IA), which are postsynaptic to the other glomus cell type and presynaptic to afferent nerve endings, are dopaminergic interneurons that suppress the afferent discharge frequency during normoxia by releasing dopamine. (iii) The hypoxic stimulus causes the chemoreceptive cell to release the stored norepinephrine, which in turn brings about disinhibition of the afferent nerve endings by inhibition of the interneuron. (iv) Afferent nerve endings and interneurons interact through reciprocal synapses that form a short inhibitory feedback loop. We propose that information in the carotid body is processed in a fashion graded rather than digital, providing a fine adjusted cooperation of all elements.
منابع مشابه
Interactions of chemostimuli at the single cell level: studies in a model system.
The responses of afferent chemosensory fibres of the carotid body to individual chemostimuli have long been established. However, the mechanisms underlying the multiplicative interactions of these stimuli (i.e. how the combined effects of hypoxia and hypercapnia exert a greater effect on afferent nerve discharge than the sum of their individual effects) have not been elucidated. Using the membr...
متن کامل[Arterial chemoreceptors: cellular and molecular mechanisms in the adaptative and homeostatic function of the carotid body].
The carotid body is a sensory chemoreceptor organ located in the vicinity of the carotid bifurcation. Structurally it is composed of cell clusters formed by chemoreceptor and supporting cells. The sensory nerve endings of the carotid sinus nerve penetrate the clusters to synapse with chemoreceptor cells. The carotid body plays an important role in the control of ventilation during hypoxia, hype...
متن کاملChronic hypoxia increases the gain of the hypoxic ventilatory response by a mechanism in the central nervous system.
We studied the effects of the ventilatory stimulant doxapram to test the hypothesis that chronic hypoxia increases the translation of carotid body afferent input into ventilatory motor efferent output by the central nervous system. Chronic hypoxia (inspired Po(2) = 70 Torr, 2 days) significantly increased the ventilatory response to an intravenous infusion of a high dose of doxapram in consciou...
متن کاملEffects on breathing of carotid body denervation in neonatal piglets.
The purpose of these studies was to test the hypothesis that carotid chemoreceptor activity is necessary for postnatal maturation of the ventilatory control system. By using a lateral surgical access, 17 piglets were carotid body denervated (CBD) and 14 were sham denervated at 3-25 days of age. After surgery, there was no irregular breathing in any group. There was no significant hypoventilatio...
متن کاملConsequences of capsaicin treatment on pulmonary vagal reflexes and chemoreceptor activity in lambs.
The aim of this study was to test the hypothesis that capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function but does not alter other vagal pulmonary receptor functions or peripheral and central chemoreceptor functions. Eleven lambs were randomized to receive a subcutaneous injection of either 25 mg/kg capsaicin (6 lambs) or solvent (5 lambs) under general anesthesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 75 5 شماره
صفحات -
تاریخ انتشار 1978